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Abstract
This paper discusses a seven-dimensional conformal geometric algebra model
for spacetime based on the notion that spacelike and timelike infinities are
distinct. I show how one of the dimensions represents the lightlike infinity and
becomes redundant in computations, yet useful in interpretation.

PACS numbers: 02.10.Xm, 03.30.+p, 04.20.Cv, 04.20.Gz

1. Introduction

Geometric algebra arises from a fruitful marriage between vector algebra and Clifford algebra.
It was Hestenes [1] who brought it into its present most common form and who realized
the potential of this mathematical language for physics. Recently textbooks have started
appearing [2]. Currently geometric algebra, as applied in physics, comes in two forms: the
straightforward direct implementation as found, for example, in spacetime algebra [1] or
the para-vector approach by Baylis [3]. A formulation that is especially suited to studying
geometric relations has been given by several authors [4], and the same formalism has also
been applied to study problems in elasticity theory [5].

The key notion in geometric algebra is to complement the usual vector space operations, of
addition and multiplication by a scalar, by a product among vectors. This so-called geometric
product is defined to be associative and distributive with respect to addition. However, it is
non-commutative in general. A particularly important defining property is the fact that the
square �a2 of any vector �a becomes a scalar. From this axiom it is easy to show that for any
two vectors, �a and �b, from some geometric algebra the symmetrized geometric product is also
a scalar quantity. The dot product, or scalar product between two vectors, is thus defined as

�a · �b = 1
2 [�a�b + �b�a]. (1.1)

The anti-symmetric part yields a new geometric object called a bivector, or a blade. The
product that is defined as the purely anti-symmetric part of the geometric product

�a ∧ �b = 1
2 [�a�b − �b�a], (1.2)

0305-4470/04/429965+09$30.00 © 2004 IOP Publishing Ltd Printed in the UK 9965

http://stacks.iop.org/ja/37/9965


9966 F M C Witte

is called the wedge product. Geometrically bivectors define a two-dimensional linear subspace
of the vector space. Yet bivectors also play an essential role in the geometric algebra as
generators of norm-preserving transformations. When, in Euclidean space, the geometric
products are expressed in terms of orthonormal basis vectors ej one finds that these satisfy the
algebra

ei · ej = δij . (1.3)

It is not difficult to find a matrix representation for such algebras, as is discussed at length
in [3]. The spirit of geometric algebra is, however, not to express things in terms of matrix
representations, but rather to keep things representation free.

Three-dimensional Euclidean space E3 can be modelled by means of a five-dimensional
geometric algebra, CGA5. The model is conformal, in the sense that the elements of the
algebra encoding geometric properties of E3 only need to be determined up to a scale. One
great advantage of this way of dealing with E3 is that geometric objects such as lines, planes,
circles and spheres can be handled algebraically in a very efficient and powerful fashion.
Similarly important is the fact that conformal transformations can be treated independently
of the object to be transformed. For example, the transformation equations for lines, planes,
circles, tangents and individual points are the same,

A′ = RAR̃, (1.4)

where A is a geometric object and R is a versor, an element from the even sub-algebra that
represents the desired transformation. For a rotation in the plane generated by the vectors �a
and �b, for example, the simple expression

R = �a�b, (1.5)

suffices to represent a rotation over twice the angle between the two vectors. The symbol
R̃ = �b�a and is called the reverse of R. We will summarize the characteristics of the CGA5

model of three-dimensional Euclidean space in section 2.
In relativistic electrodynamics these transformation rules acquire a new use as they can

be used to represent the action of electromagnetic fields on proper velocity of a particle [9].
The Lorentz force equation

�̇u(τ) = F · �u(τ), (1.6)

can be turned into a versor equation for a versor R in

�u(τ) = R�u(0)R̃, (1.7)

yielding

Ṙ = 1
2 [R, F ], (1.8)

where we use commutator brackets for shorthand. This technique allows one to solve the
equations with considerable ease in a number of interesting cases such as the motion of
charges in constant electromagnetic fields, the Coulomb potential and in electromagnetic
planewaves [6]. Usually it is the position dependence of F that presents problems when one
wants to fully exploit the nice linearity of the equations. The reason is that the versor R only
encodes the evolution of the proper velocity. The evolution of spacetime position must be
deduced from that of the velocity, which is only simple when they are uncoupled, or when
some symmetry saves the day. If we could extend the versor R to include the translation as
well, we may become able to solve some aspects of this problem.

The versor describing the motion of a charged particle in an electromagnetic field is closely
affiliated with the spinor solutions of the Dirac equation [7]. In fact, quantum mechanics and
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classical mechanics become very close kin when formulated in terms of versors. In a sense,
the Dirac equations remedy the lack of knowledge of the translational degrees of freedom by
embedding them in a field theory. If we solve the Dirac equation the spinor at a point carries
information on the local direction of a ‘proper velocity’ connected to the Dirac current, the
spinor field contains the information concerning the possible trajectories. The connection
between versors and quantum mechanical wavefunctions, or Fermi fields, has not been fully
understood yet. A versor description of motion that includes translation will add to this.

In this paper I want to present a seven-dimensional model of spacetime that does just this.
In section 2, I review the CGA5 model for three-dimensional Euclidean space emphasizing
those aspects that are important for the discussion in this paper. In section 3, I present
how a CGA7 model for spacetime is seen to arise from a proper treatment of the different
types of infinity arising in relativity. I also show that it reduces effectively to a d = 4 + 2
model by separating off the lightlike infinity that disconnects from the rest of the model. The
remaining six-dimensional conformal model of spacetime has just the properties to ensure that
all conformal maps on spacetime are versor operations. This of course includes translations. In
section 4 I summarize the main points and discuss the possible connections with the twistorial
treatment of spacetime.

2. The CGA5-model for space

As was mentioned in the introduction, three-dimensional Euclidean space can be modelled
with great sophistication by a conformal model based on a five-dimensional geometric algebra,
CGA5. I will refer to an excellent tutorial available on-line, in [8] by Dorst and Fontijne, for
more background on this model. Since I will take the CGA5 model as a starting point, a brief
recapitulation nevertheless seems appropriate.

2.1. Reviewing the CGA5 model

Euclidean space, E3, can be described as a subspace of higher-dimensional space in a variety of
ways. For the CGA5 model we start out with a five-dimensional vector space with the ordinary
vector space properties. Next we assume that in this space we have three basis vectors, �e1, �e2

and �e3, in which the position of any point in E3 relative to some origin can be expanded. We
will denote the origin by the basis vector �O. The last basis vector we need will be denoted �e∞
and its use becomes clear when we define how to compute the Euclidean length in this model.
Let dE(P,Q) denote the Euclidean distance between the points P and Q. Now suppose that
these points are represented by five-dimensional vectors �p and �q. Then we define,

− 1

2
dE(P,Q)2 = �p · �q

(�p · �e∞)(�q · �e∞)
. (2.1)

The dot product is related in the usual way to the underlying geometric product through

�p�q = �p · �q + �p ∧ �q, (2.2)

and represents the symmetric part of the geometric product, whereas the wedge product
represents the anti-symmetric part. The fact that the symmetric part yields a scalar is a direct
result of the axioms defining any geometric algebra. The model for E3 is found by representing
points in E3 by those vectors �p for which,

�p · �e∞ = −1. (2.3)

As a point has a vanishing distance to itself, consistency requires a second restriction on the
vectors representing points in E3, namely

�p2 = 0. (2.4)
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The basis vector �e∞ represents the point at infinity and also satisfies �e2
∞ = 0, hence it is at

an infinite distance to any other point in E3. We are dealing with an indefinite metric. Let us
denote the base vector �O by �e4, if we diagonalize the matrix gij = �ei · �ej , that we obtain from
the inner products of the matrices, then we find this space has a signature +3.

2.2. Versors and vectors is CGA5

The CGA5 model allows for subtle distinctions between various vector concepts. One of these
is particularly important for our discussion of kinematics in section 4. There we will need the
notion of a tangent vector at a point. In the CGA5 model this distinction arises from the fact
that the basis vectors �ej for j = 1, 2, 3, can be wedged with the vector representing the origin
to designate just such a combination of vector properties and an association with a particular
point. So, given some pure space vector

�v = v1�e1 + v2�e2 + v3�e3, (2.5)

we will define the tangent vector V at �O by

V = �O ∧ �v. (2.6)

It is important to be aware that the tangent vectors at other positions can be found from that
at the origin by applying a translation. Such translations do not only affect �O, but also �v. It is
relatively straightforward to check that, given another pure space vector �x, the versor

T (�x) = (
1 − 1

2 �x�e∞
)
, (2.7)

can be used to represent the translated origin �O ′
as follows:

�O ′ = T (�x) �OT̃ (�x). (2.8)

This versor does not leave pure space vectors invariant!

2.3. Linear sub-spaces

The great utility of this model lies in the ease with which certain classes of subspaces can be
represented. We will just mention a few examples which are relevant to the discussion in this
paper. The so-called Flats-like lines, planes and point-pairs, as well as Rounds such as circles
and spheres can be represented by blades, i.e. wedge products of vectors. For example, the
points �a, �b, �c and �d define a unique sphere passing containing each point. The blade

S = �a ∧ �b ∧ �c ∧ �d, (2.9)

describes just this sphere, for any point �x satisfying

�x ∧ S = 0, (2.10)

is on S. In this model we can construct geometric objects by wedging points together, with a
special role for the vector �e∞; if it is part of a blade, this blade typically describes flats-like
lines and planes. Even a simple point �p in E3 can be wedged with infinity to yield a so-called
flat point �p ∧ �e∞. Flat points are points that are connected to infinity in an intricate sense, as
I shall illustrate below.

Geometric objects can be specified in the CGA5 language using the wedge product and
points contained in the object. But there are alternatives, and I will mention that most relevant
for this paper. Dualization allows us to move to an inner-product representation of geometric
structures. There exists a dual representation of the sphere S, denoted SD for which any point
�x on S satisfies

�x · SD = 0. (2.11)
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This dualization is done with respect to the smallest common subspace of the elements
contained in the object. In many cases taking the dual amounts to multiplication by the unit-
pseudoscalar in the geometric algebra. An important application of the dual representation is
in determining the intersection of two subsets. With a slight abuse of notation the following
holds:

(A ∩ B)D = AD ∧ BD. (2.12)

The sphere is a grade 4 blade and thus the dual sphere is grade 1, i.e. a vector! This close
proximity of spheres and points is no coincidence. It is relatively straightforward to show that,
given a dual sphere SD , the radius R of the sphere is given by

R2 = SD · SD, (2.13)

ordinary points are just dual spheres of zero radius. The CGA5 model also contains spheres
with negative squared radii, referred to as imaginary spheres, that do not have an immediate
geometric interpretation despite the fact that they are important elements needed to close the
algebra. We will see later that in the CGA7 model of spacetime the analogues of imaginary
dual spheres are real geometric objects.

I end this review of the CGA5 model with one more note on dual spheres, as it nicely
illustrates the nature of the flat point. The dual representation of a sphere around a point �q and
containing a point �p can be shown to be

S( �p, �q) = �p · (�q ∧ �e∞), (2.14)

which can be read as representing the object containing �p and orthogonal to the flat-point �e∞.
If we picture flat points as a point with hair extending all the way to infinity, this description
is very satisfactory.

3. The CGA7 model for spacetime

What we should have picked up from the above is that the proper treatment of the point
at infinity has been the key to developing a powerful new language for phrasing geometric
relationships. In this section we seek to approach the construction of a space–time model from
just this point of view. In this subsection we will do this and show how the model effectively
reduces to a CGA6 model.

In spacetime the metric is non-definite. As a consequence there exist three forms of
infinity. As it is customary to denote spacetime points as events we will use this word in this
context too. Let dM(P,Q) denote the Minkowksi distance between the events P and Q. If we
consider some arbitrary spacetime event P we can write down two infinities

dM(P, �∞+)
2 = +∞, (3.1)

dM(P, �∞−)2 = −∞. (3.2)

The first of the two I will refer to as time-like infinity, which is the event representing the
future, or past, infinity that can be reached via timelike worldlines only. The second one is
the spacelike infinity that is a close kin of the point at infinity in the CGA5 model for E3.
These definitions raise the question whether we should not also introduce a lightlike infinity.
The answer is negative as the lightlike infinity will make its appearance very natural in this
context. Equipped with two infinities the construction of a proper, conformally invariant,
metric becomes a little more complicated. Next to this, the geometric algebra that is to model
spacetime needs one dimension more than one naively might have expected.
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Let us first solve the problem of defining a proper metric. The problem associated with
doing so is located in the denominator of the definition; what to choose? There are a few
criteria. First, the relations established to define the infinities must of course hold true. A
crucial issue is that of what to say about the distance between the two infinities. Next, the inner
products between the vector �x representing some event X and the vectors �∞± representing
the two infinities should stay finite for the whole algebra to make any sense at all. As vectors
representing events will come out as null-vectors, i.e. �x2 = 0, so should the infinities if we
want them to represent actual elements of spacetime. Straightforward choices for evidently
symmetric definitions of dM(P,Q) tend to give inconsistencies. Here we present a definition
that bears a small amount of asymmetry,

− 1

2
dM(P,Q)2 = �p · �q

( �p · �∞+)(�q · �∞−)
. (3.3)

However, together with the requirements

�x · �∞± = ±1, (3.4)

�∞± · �∞± = 0±, (3.5)

�∞+ · �∞− = θ, (3.6)

this does give a consistent set, and is completely symmetric on all events whose distance
from an arbitrary origin �O remains finite. In other words, the asymmetry is restricted to
and directly related with the structure at infinity itself. The vectors representing infinity are
null-vectors in a limiting sense. The 0± indicates that they are taken to be approaching 0
from the positive/negative side. The inner product between the two infinities is taken to be a
vanishingly small parameter that is set to 0 at the end of any computation. All this seems to
suggest that we are dealing with a singular situation, which could be due to over-counting the
number of dimensions that we need. If we diagonalize the matrix of the innerproducts of all
seven basis vectors we find it has two positive, four negative eigenvalues and one zero mode.
The latter is easily identified as the eigenvalue belonging to the vector

��0 = 1
2 ( �∞+ + �∞−). (3.7)

If we take the inner product of this vector with any vector �x representing an event in spacetime,
we find that it vanishes. The natural interpretation of ��0 is that it represents an infinity at
vanishing Minkowski distance, i.e. lightlike infinity. The linearly independent combination

��∞ = 1
2 ( �∞− − �∞+), (3.8)

represents a new type of infinity that contains both spacelike as well as timelike infinities and
that satisfies

�x · ��∞ = −1, (3.9)

with all events in spacetime. This linear combination of spacelike and timelike infinity actually
takes over the role of �∞ in the CGA5 model of E3.

Lightlike infinity completely decouples from the model and therefore the CGA7 model
effectively reduces to a CGA6 model. The eigenvalues of the inner-product matrix indicate
that we are dealing with a SO(2, 4) invariant metric definition, and it should be no surprise
that this group which is known to be the conformal group of Minkowski space [10] appears
here. If �x is a pure spacetime vector, the versors of the form

V = exp
(

1
2 �x ��∞

)
, (3.10)
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generate the ordinary spacetime translations. However, minding the fact that there is another
infinity in the game, we could also write down versors like

V = exp
(

1
2 �x ��0

)
. (3.11)

Their geometric role needs further clarification [11].

3.1. Subspaces

The spacetime analogues of E3 dual spheres are objects with the following representation:

S(�c) = �c + R2 ��∞. (3.12)

This is the dual representation of an object with a constant Minkowski radius which I shall
refer to generally as shells. If R2 � 0, then we are dealing with a timelike shell at some
fixed distance from the event �c, if R2 � 0 we are dealing with a spacelike object that we may
want to call a dynamical sphere. It is a spherical surface collapsing in on the event �c and then
expanding again, all at a constant acceleration. The reader may have felt some surprise that the
CGA5 model for E3 was capable of representing nonlinear objects such as spheres and circles
in a linear fashion. Here we see the spacetime version of this; dynamically non-uniform and
nonlinear elements being described by means of a static and linear equation of the form

�x · SD = 0. (3.13)

In order to provide a physical system in which such 3-shells occur, here are two straightforward
examples.

Suppose that, following a heavy-ion collision taking place at some event �c, a quark–gluon
plasma hadronizes after a proper-time τ [12]. Now two observers measure the radiation
coming from the hadronization and they do so at the events �p1 and �p2. To determine which
part of the hadronization process they observe, all we need to do is form the intersections H1

and H2 of the lightcones of the observers with the shell corresponding to the hadronization
process. The shell is given by the dual description

SD
hadr = �c + τ 2 ��∞, (3.14)

and so we obtain

Hj = ( �pj ∧ SD
hadr

)D
. (3.15)

This blade completely specifies the subspace in spacetime observed by observer j . All the
hadronization events, �X, observed by observer j are solutions to a linear equation,

�X · ( �pj ∧ SD
hadr

) = 0, (3.16)

and hence can easilly be slotted into a Dirac delta function for evaluation with a source or
current distribution. Computing the portion of the hadronization that is observed by both
observers is a similar one-line computation.

The decay of false vacuum typically proceeds through the formation of critical bubbles that
can be represented as the so-called bounce solutions [13] in an underlying field theory. These
bounces, at zero temperature, typically are spherically symmetric solutions in four-dimensional
Euclidean field theory, as they are imaginary time solutions. The bubble wall separating the
different phases typically occurs around some fixed value of the Euclidean distance from the
centre of the bounce. When continued to real time, this bubble wall is a physical realization
of what I have called a dynamic 3-sphere. Hence it is described by a particular blade in the
CGA6 algebra. Collisions between bubble walls occur at the intersections of these blades.
Thus the above methods should prove fruitful in such problems.



9972 F M C Witte

4. Discussion and conclusions

The six-dimensional CGA6 has also been discussed previously in [15]. I would like to
underline once again here that such models could possibly serve as a tool to identify what the
geometric primitives of spacetime really are. In E3 they were the flats and the rounds, but also
a whole host of subtly different vector concepts. No doubt the CGA6 model for spacetime
will contain a similar, possibly far greater, wealth of geometric objects.

The inner products used to create the conformal model of spacetime bear some
resemblance to the way twistors are used to provide a representation of spacetime events.
Let us study this in a little more detail. Using the notation of Penrose and Rindler, [16], let
us consider two twistors Xα and Zβ . The intersection of the α-planes they represent may be
considered to be a spacetime event if the two twistors are both null and orthogonal. In that
case the valence 2 twistor

Rαβ = XαZβ − ZαXβ, (4.1)

represents this spacetime event up to a scale and satisfies RαβRαβ = 0. This raises the
question of in what sense these valence 2 twistors are related to the CGA6 vectors. The
resemblance becomes even more striking when one considers the definition of the spacetime
distance between two events Q and R. If these are represented through their bi-twistors Qαβ

and Rαβ , and their twistor-duals (with upper indices), then the spacetime distance between the
two events is given as

d2(Q,R) = QµνRµν

Qστ IστRαβIαβ

. (4.2)

The infinity twistor Iαβ represents conformal infinity. This seems to suggest a direct
correspondence between the CGA6 model of spacetime presented here and the twistor space
associated with Minkowksi space. Further work in this direction would be needed to ascertain
the true content of this correspondence, as it raises a number of questions. For example, in
[17] twistors were interpreted as elements from the even sub-algebra of spacetime algebra; but
what relates these multivectors geometrically with the CGA6 null-vectors

As we have seen, spacetime events are not dual spheres with zero radius, rather they
are dual lightcones! This suggests that the ‘building blocks’ of spacetime, the events, and
the causal structure of spacetime, lightcones, are related by a duality transformation. In
the CGA7 model lightlike infinity decouples from the algebra essentially because all dual
lightcones share the same lightlike infinity. In environments such as black holes this clearly
cannot be the case. So one question to ask is whether such cases can be described by non-trivial
algebraic structures in this extra dimension. It is also an open issue whether the decoupling
of lightlike infinity is also true if quantum aspects of geometry must be taken into account. In
view of some of the arguments put forward in [18] this could be seen as a hint that particle
states in spacetime are unitary representations of an appropriate little group of lightlike infinity.
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